
VQ 170

GaAlAs-Infrarotemitterdiode mit Buchsengehäuse, das mittels einer lösbaren Steckverbindung mit einem LWL-Kabel verbunder, werden kann.

Einsatz in LLKU-Systemen

Grenzwerte

Grenzwerte				
Durchlaβgleichstrom bei θ _a = 25 °C		min.	max.	
ab $\vartheta_{a} = 40 ^{\circ}\text{C}$ Reduktion 2,5 mA/K	¹F		100	mA
Spitzendurchlaßstrom¹) bei 8 _a = 40 °C	IFRM		100	m A
Reduktion 2,5 mA/K	LKIM		100	
Spitzendurchlaßstrom²) ab 8 _a = 40 °C Reduktion 5 mA/K	I _{FRM}		200	mΑ
Sperrgleichspannung bei ∂ _a = −40 70 °C	$\cup_{\mathbf{R}}$		3	v
Spitzensperrspannung, periodische				
bei 9 _{a} = −40 70 °C	U_RRM		3	٧
Betriebstemperatur	∂ _a	40	70	°C
Lagerungstemp e ratu r	$artheta_{stg}$	+5	+35	°C
bis 30 Tage	ϑ_{stg}	50	+55	°C
Sperrschichttemperatur	$\vartheta^{\mathbf{j}}$		80	°C
Kenngrößen bei $\vartheta_{\mathbf{a}} = 25\mathrm{°C}$,	min.	max.	
Durchlaßgleichspannung bei I _F = 50 mA	U _F		2,6	v ¹
Strahlungsleistung bei I _F = 50 mA	$\Phi_{oldsymbol{o}}$	150 -		μW
eingekoppelte Strahlungsleistung bei I _F = 50 mA; Φ _k = 200 μm;				
$N\alpha = 0.3$	$\Phi_{\sf LL}$	40³)		μW
Sperrgleichstrom bei U _R = 3 V	I _R		10	μΑ
Impulsanstiegszeit	t _r		40	ns
lmpulsabfallzeit bei l _f = 100 mA;	ŧţ		40	ns
$t_p = 1 \mu s$; $f_r = 10 k Hz$;

Kenngrößen bei $\theta_{\mathbf{g}} = 25^{\circ}$ C	1		
itemigresen bea		min.	max.
Durchlaßgleichspannung bei I _F = 50 mA	U _F		2,6 V
Strahlungsleistung bei I _F = 50 mA	$\Phi_{f o}$	150	μW
eingekoppelte Strahlungsleistung bei $1_F = 50 \text{ mA}$; $\Phi_{\mathbf{k}} = 200 \mu\text{m}$;			
$N\alpha = 0.3$	$\Phi_{\sf LL}$	40³)	μW
Sperrgleichstrom bei U _R = 3 V	I _R		10 μΑ
Impulsanstiegszeit	t _r		40 ns
lmpulsabfallzeit bei l _f = 100 mA; t _p = 1 μs;	tf		40 ns
$f_p = 10 \text{ k Hz}$			
Wellenlänge des Maximums der spektralen Emission bei I _F = 50 mA	λ_{max}	790	8 50 nm
spektrale Strahlungs-	max		

bei $I_F = 50 \text{ mA}$

bandbreite

 $\Delta\lambda_{0,5}$

50

nm

¹⁾ für beliebige Tastverhältnisse

²) $t_p = 1 \, \mu s$; $f_p = 10^3 \, Hz$

³) Werden LWL mit einer anderen numerischen Apertur verwendet, so ist folgender Zusammenhang zu beachten: $\Phi = f$ (NA) = $K \cdot \frac{1}{NA^2}$